If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-10x-290=0
a = 1; b = -10; c = -290;
Δ = b2-4ac
Δ = -102-4·1·(-290)
Δ = 1260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1260}=\sqrt{36*35}=\sqrt{36}*\sqrt{35}=6\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-6\sqrt{35}}{2*1}=\frac{10-6\sqrt{35}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+6\sqrt{35}}{2*1}=\frac{10+6\sqrt{35}}{2} $
| 8(x-1)=6x+4+2 | | 4|n+8)=56 | | 3/x+4=2/3x-2 | | 30+3x7=51 | | (-8-3k)÷2=11 | | {125}=(15-2x)(12-2x)(x) | | 3x-7+5x=2x-7 | | -9(u+7)=3u+33 | | 6(x-3)+3(x+7)=3 | | 180-2y-3y-10=y | | (X+1)x(X-1)=63 | | (X)x(X+1)=63 | | (X)x(X-1)=63 | | 7+3(4x+8)-6x=47 | | /3x-6=7x+16 | | x^2+7x-49=-120 | | (6n-9)+(5n+13)+57=180 | | 3(2x+1)=5+6x-2 | | x(x^2+7x-49)=-120 | | -17=r+32 | | Y=4.35+2.25x | | 2(x-1)=1+1/2 | | 18-3x-8x-48=0 | | 6y-32=y | | 18x+10-5=18-13x | | 180-6y-32=y | | 7(10-x)=9(8x+4) | | 8p-5/7×p+1=-5/4 | | 2^(2x+1)-9^(2x)=-4 | | 2^(2x+1)-9^(2x)+4=0 | | v+237=4 | | 3q+15=78 |